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Abstract

Testing the effect of rare variants on phenotypic variation is difficult due to the need for extremely large cohorts to identify associated
variants given expected effect sizes. An alternative approach is to investigate the effect of rare genetic variants on DNA methylation
(DNAm) as effect sizes are expected to be larger for molecular traits compared with complex traits. Here, we investigate DNAm in healthy
ageing populations—the Lothian Birth Cohorts of 1921 and 1936—and identify both transient and stable outlying DNAm levels across the
genome. We find an enrichment of rare genetic single nucleotide polymorphisms (SNPs) within 1 kb of DNAm sites in individuals with
stable outlying DNAm, implying genetic control of this extreme variation. Using a family-based cohort, the Brisbane Systems Genetics
Study, we observed increased sharing of DNAm outliers among more closely related individuals, consistent with these outliers being
driven by rare genetic variation. We demonstrated that outlying DNAm levels have a functional consequence on gene expression levels,
with extreme levels of DNAm being associated with gene expression levels toward the tails of the population distribution. This study
demonstrates the role of rare SNPs in the phenotypic variation of DNAm and the effect of extreme levels of DNAm on gene expression.

Introduction
DNA methylation (DNAm) is involved in the regulation of gene
expression (1–3). Variation in DNAm has been associated with
many diseases, in particular cancers (4,5), but also common dis-
ease (6). Both genetic (7,8) and environmental (9–11) factors are
highly influential to the variation in DNAm levels across the
genome. In this study, we aim to characterize the effects of
rare genetic single nucleotide polymorphisms (SNPs) on DNAm
variation. This will help us in understanding the genetic architec-
ture of DNAm, and potential mechanisms through which genetic
variants can affect complex traits via effects on DNAm.

Variation in DNAm levels is known to be under partial genetic
control; a family based study estimated the average heritability
of DNAm levels to be h2 ∼ 19% (8), while another study esti-
mated the average SNP-based heritability to be h2

SNP ∼ 21% (12).
DNAm quantitative trait loci (mQTL) analyses have discovered
many associations between common genetic variants and DNAm
levels across the genome (7,12–15). Regional control of DNAm
has been observed in regions of up to 3 kb, through shared
mQTL and correlations between DNAm levels across the region

(7,16), while a Bayesian co-localisation study found evidence for
a shared genetic effect between ∼282 000 pairs of CpG-sites at
a median distance of ∼110 kb (14). Overlap between mQTL and
gene expression QTL (eQTL) has also been observed (7,13), with
genetic variants found to affect DNAm and gene expression levels
pleiotropically (14,17). These observations point toward a possi-
ble mechanism through which genetic variants can alter gene
expression levels via underlying differences in DNAm levels in a
region.

Rare genetic variation has been shown to be important in
the genetic architecture of complex traits, and gene expression
(18–21). Rare variants have been found to be enriched near the
transcription start site of genes in individuals with outlying levels
of gene expression in both humans (22) and maize (23), and partic-
ularly in those individuals with outlying levels of gene expression
across multiple tissue types (20), suggesting a large effect from
rare genetic variation on gene expression levels. Some evidence
has been found for similar effects of rare genetic variation near
CpG-sites on DNAm variation (24), and in addition, using variant
aggregation tests there has been evidence of effects from rare
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variants on DNAm levels even when there is no common vari-
ant association at the relevant CpG-site (25). We hypothesize
that, similar to the association found between rare variants and
outlying gene expression levels (20,22,23), there are associations
between rare variants and outlying levels of DNAm. Outliers
in DNAm have been associated with common diseases such as
motor neurone disease (26) and type I diabetes (27). Understand-
ing the underlying mechanisms may help in determining the
genetic aetiology of these associations between outlying DNAm
and common disease. In addition, CpG-sites are known to be
highly mutable, with the mutation rate at CpG-sites estimated
to be one order of magnitude higher than anywhere else in the
genome, which results in an enrichment of mutations at CpG-sites
in the genome (28–34). Knowing how mutations at CpG-sites will
affect DNAm and gene expression levels in the genome may also
be important for understanding the genetic aetiology of complex
trait diseases and cancers.

In this study, we aim to extensively examine the relation-
ship between rare genetic variation and DNAm levels across the
genome, and how DNAm levels may affect gene expression levels
at nearby genes.

Results
An overview of the methods used in this study, with the different
data available to us is given in Figure 1.

Detecting genome-wide genetic effects on DNAm
Using whole genome sequencing data and whole blood DNAm
measures from the Illumina Infinium HumanMethylation450
array for n = 1196 individuals from the Lothian Birth Cohorts (LBC)
of 1921 and 1936 (35), we tested for global effects of both rare and
common genetic variants on DNAm levels across the genome.
The number of minor alleles within 1 kb of the CpG-site were
counted for each individual within a given minor allele frequency
range, then, at each of the 415 007 DNAm probes, individuals
were ranked from lowest DNAm level to the highest and number
of minor allele counts was averaged at each rank across DNAm
probes. As a control, before ranking the individuals at each DNAm
probe, we randomly permuted the minor allele counts for each
individual, which is equivalent to counting the minor alleles
within a random 1 kb region in the genome. If there is no genetic
effect on DNAm for SNPs with a given allele frequency range, we
would expect no relationship between the average minor allele
count across rank. We observe an inflation in allele counts at the
lowest and highest ranks, for all minor allele frequency (MAF)
ranges, while there is no inflation observed in the minor allele
counts at a random 1 kb region (Fig. 2), suggesting genetic effects
from variants in all MAF ranges affecting DNAm levels across
the genome. This pattern of effect was also observed for minor
alleles within 10 bp, 100 bp, 5 kb, 10 kb and 50 kb of the CpG-sites
(Supplementary Material, Fig. S1).

For the common, and low-frequency variants (MAF > 0.1, and
0.01 < MAF < 0.1, respectively), we show that these effects are
largely captured by mQTL analyses by separating the ∼180 000
probes with a significant mQTL detected in previous studies
(15), with no visible inflation at the ends of the distributions
(Supplementary Material, Fig. S2). However, for the rare variants
(MAF < 0.001, and 0.001 < MAF < 0.01), the distributions after
removing the mQTL probes remain inflated at the ends of the
rank distribution, suggesting that mQTL do not capture the effects
of rare variants.

The association between minor allele counts and DNAm rank
is asymmetrical in Figure 2, with the lowest ranks having a larger
inflation than the highest ranks in all MAF bins. This observation
suggests a bias toward SNP minor alleles decreasing DNAm levels
across the genome. However, after separating the probes which
contain an SNP at the CpG-site (CpG-SNP) from the rest of the
probes, we see that the inflations are more symmetrical for probes
which do not contain a CpG-SNP, with slightly more inflation in
the higher ranks (Supplementary Material, Fig. S3). This suggests
that the allele disrupting the CpG site is, on average, the minor
allele, which may be attributed to a combination of bias in selec-
tion of CpG sites included on the array (sites which are generally
CpGs were chosen), and a known mutational bias in the genome
from (methylated) cytosine to thymine through the process of
deamination (33).

While inflation in the minor allele count is observed for
individuals with either lowly or highly ranked methylation
values for all MAF classes, for the rare variants (MAF < 0.001 and
0.001 < MAF < 0.01), we see that the inflation is largely restricted
to the extremes of the distribution. This is consistent with rare
variants driving more extreme levels of DNAm.

Enrichment in rare alleles in individuals with
outlying DNAm
We identified outlying DNAm levels at individual methylation
probes using the subset of 613 individuals in the LBC dataset
who have DNAm measurements at a minimum of three time-
points. At a given time-point, an outlier was defined as a CpG-
site in an individual with DNAm levels more than three times
the interquartile range below the first quartile, or above the
third quartile at that CpG-site. We detected a total of 3 698 676
outliers in at least a single time-point of measurement (each
individual can be outlying at multiple probes). Approximately
80% (330 671/415007) of DNAm probes had at least one individual
with outlying levels of DNAm. In addition, ∼5% of the outliers at
a CpG-site (198 933/3698676) were consistently outlying at that
site across at least three time-points. The outlier burden (mean
number of outliers per individual at a time-point, Seeboth et al.
2019 (64)) was 2074 (out of 415 007 probes ∼0.5%), reducing to 304
(∼0.07%) when considering only those outliers stable across at
least three time-points.

We observed an enrichment of ∼1.05× in the number of
rare and low-frequency alleles within 1 kb of the CpG-site in
outliers versus non-outliers. For the control analysis (randomly
permuting the counts within 1 kb for each individual across
all CpG-probes), no inflation was observed in any MAF range
(Supplementary Material, Fig. S4).

We removed probes with a CpG-SNP as they may bias the
enrichment. CpG-SNPs disrupt the methylation at the site which
will likely result in outliers (36). We observe a much larger
enrichment in all MAF groups when looking only at CpG-SNP
probes (Supplementary Material, Fig. S5); however, we do not
include these probes in any subsequent analyses.

The enrichment of rare alleles in outliers versus non-outliers
stable across three to four time-points was larger relative to the
transient outliers observed to be outlying at a single time-point
(Fig. 3).

Those outliers which were stable, outlying at three to four
time-points of measurement, had a much larger enrichment of
minor alleles within 1 kb of the CpG-site than those outliers only
observed to be outlying at a single time-point (Fig. 3).

The enrichment in the rare and low frequency alleles in stable
outliers versus non-outliers was still significantly larger than 1,
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Figure 1. Overview of the methods used in this study. The Lothian Birth Cohorts of 1921 and 1936 were used to investigate the effect of genetic variants
on DNA methylation levels, while the Brisbane Systems Genetics Study was used to examine the effect of DNA methylation levels on gene expression
levels. (A) The number of minor alleles within 1 kb is plotted against methylation rank (The individual with the nth lowest DNAm levels will have a
methylation rank of n at that CpG-site); in the case of no effect of genetic variants on DNAm levels, a uniform distribution is expected, any deviation
from the uniform distribution is evidence for a genetic effect on DNAm levels. (B) The enrichment of minor alleles within 1 kb in outliers compared to
non-outliers; in the case of no effect of genetic variants on DNAm outliers, the enrichment will be 1, any significant deviation from 1 is evidence of an
effect of genetic variants on outliers of DNAm. (C) The proportion of outliers shared between pairs is plotted against the pedigree relatedness; if there
is no genetic effect on DNAm outliers a slope of 0 is expected, any non-zero slope is evidence for a genetic effect on DNAm outliers. (D) Finally, the
distribution of gene expression percentile of individuals with DNAm outliers at nearby probes is plotted; in the case of no effect from DNAm on gene
expression, a uniform distribution is expected, any deviation from the uniform distribution is evidence for an effect of DNAm on gene expression.

and similar from 10 to 50 kb with the enrichment not changing
significantly (Supplementary Material, Fig. S6). The enrichment
was much larger the closer we restrict from the CpG-site, although
the confidence of the estimate is lower due to the smaller number
of variants.

Outliers in gene expression and DNAm are
shared between relatives
Using the Brisbane Systems Genetics Study (BSGS) dataset (37)
(n = 595), which includes 67 MZ twin pairs, as well as many siblings
and parent–offspring pairs with whole blood DNAm and gene
expression array data, we detected a total of 1 133 080 outliers in
DNAm levels (using the same definition of outliers as before), and
446 916 outliers in gene expression levels (using the definition of
outliers as a gene expression probe in an individual with gene
expression levels outside of 1.5× the interquartile range of the
first or third quartile).

We observed a linear relationship between the proportion of
DNAm outliers (R2 = 0.40, slope = 0.18 and P < 10−323) and gene
expression outliers (adjusted R2 = 0.02, slope = 0.03, P < 10−323)

shared between each pair of individuals, and their pedigree
relatedness (Fig. 4). This is consistent with shared genetic
effects underlying both outlying levels of DNAm levels and
gene expression levels across the genome. However, there was
very little overlap between gene expression outliers and DNAm
outliers, with 6.1% of individuals with a gene expression outlier
also having a DNAm outlier at the nearest annotated gene.

Outlying levels of DNAm are associated with a
change in gene expression
Although the overlap of outlying DNAm and gene expression was
not substantial, we tested whether the outlying DNAm levels cor-
related with any change in gene expression levels. For individuals
with outlying levels of DNAm at a CpG-site, if the DNAm levels
have no effect on gene expression levels, we would expect those
individuals to be uniformly distributed across the gene expression
distributions. Firstly, we paired DNAm probes to gene expression
probes using significant common variant co-localization estab-
lished using a summary data-based Mendelian randomization
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Figure 2. The mean number of minor alleles within 1 kb of the CpG-site, and a random site for each rank of DNAm levels across all autosomal probes
across four MAF ranges. Each point represents the average number of minor alleles within 1 kb for the individual ranked xth from lowest to highest
methylation levels for each of the 415 007 CpG-probes. Top: rare variants are associated with high and low ranking levels of DNA methylation. Bottom:
no association remains after permutation of rare variant counts within individuals.

Figure 3. The enrichment in minor alleles within 1 kb of the CpG-site in transient and stable outliers vs non-outliers. The enrichment in rare alleles
within 1 kb is significant for transient outliers in the rare (0.001 < MAF < 0.01) and low frequency (0.01 < MAF < 0.1) MAF bins, but substantially larger
in outliers stable across time.

(SMR) study (17), then at DNAm probes within 10 kb of the
gene expression probes. Wu et al. used SMR with DNAm as an
exposure, and gene expression as an outcome in a Mendelian
randomization framework to find a total of 10 588 associations
between 7858 DNAm probes and 3239 gene expression probes

after a stringent SMR P-value threshold and a relaxed HEIDI filter
(heterogeneity in dependent instruments test, which filters out
associations due to linkage). Using these linked probes allows us
to focus on probe pairs already known to be linked by common
variants.
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Figure 4. Outliers in DNAm and gene expression are shared between relatives more often than at random. The linear relationship between pedigree
relatedness and proportion of outliers shared suggests a shared genetic component to the outlying levels of DNAm and gene expression. The difference
in slope suggests a stronger genetic effect on the DNAm levels compared with gene expression levels.

The rank of gene expression levels for individuals with outlying
methylation levels showed significant deviance from the uniform
distribution with the individuals with outlying DNAm more likely
to be at the ends of the gene expression distribution for both SMR-
linked probes, and the probes within 10 kb (Cramér–von Mises
test ω2 = 6.48, P < 10−323, and ω2 = 7.88 and P < 10−323, respectively,
Fig. 5). The Cramér–von Mises test was nominally significant for
the non-outlying individuals; however, the deviation from the uni-
form distribution was minimal and spread across the distribution,
with the significance driven by the sample size. In contrast, for the
outlying individuals, the deviation from the uniform distribution
was in the tails of the distribution, and the magnitude of deviation
was much larger than for the non-outlying individuals. The same
pattern was observed at DNAm and gene expression probes within
1, 5, 10 and 50 kb of each other (Supplementary Material, Fig. S7).
These results correspond to a correlation between outlying levels
of DNAm and a change in gene expression levels at the relevant
genes.

Stratifying the outliers by the direction, we see that those
outliers which are higher than the sample mean correspond to
a lower gene expression level, and the outliers lower than the
sample mean correspond to a higher gene expression level. This
shows the negative direction of effect from methylation to gene
expression (Supplementary Material, Fig. S8).

Discussion
This study examined the links between DNAm levels, rare genetic
SNPs and gene expression levels across the genome. We combined
multiple lines of evidence to demonstrate the role of rare SNPs
in outlying DNAm levels. Outlying levels of DNAm are further
demonstrated to be associated with gene expression levels at
nearby genes.

We examined the patterns of effects from common and rare
genetic SNPs, within 10 bp, 100 bp, 5 kb, 10 kb and 50 kb of
the CpG-site, on DNAm levels across the genome. We found
that rare alleles were associated with extreme levels of DNAm.
In addition, we observed a significant enrichment of rare
alleles within 10 bp, 100 bp, 5 kb, 10 kb and 50 kb of CpG-
sites in individuals with outlying levels of DNAm compared
to individuals with normal DNAm levels at that CpG-site. Our
results suggest that, in addition to common variants, rare
variants also play a role in the control of DNAm levels across the
genome.

DNAm levels at many CpG-sites are known to be correlated
with age (16,38), and changes in environment are also known
to have an effect across time (9–11). In our analysis, we found
that outliers in DNAm levels which are present at only one time-
point had almost no enrichment for rare alleles within 1 kb of
the CpG-site compared to non-outliers, but those probes outlying
across multiple time-points within an individual had significant
enrichment, suggesting that transient outliers detected at a single
time-point (3 177 418/3 698 676 ≈ 86% of the outliers in our study)
are likely caused by environmental effects or measurement error,
but the outliers stable across time are more likely to have an
underlying genetic cause. This genetic effect underlying outliers
in DNAm was confirmed using a family study design in an inde-
pendent dataset. This is consistent with previous observations
made using the LBC dataset in Shah et al. (39) who noted that
many CpG-sites across the genome had stable DNAm across
the lifetime, and these results are also in concordance with the
observation made by Gaunt et al. (12) that the majority of mQTL
are stable across time.

Similar to aggregation tests, we looked at enrichments and not
associations with individual variants (which would be difficult to
detect due to the power needed to reach statistical significance).
We cannot say which variants have an effect and which do not.
Only a single rare variant (MAF < 0.01) was observed within 1 kb
of the CpG-site in over 19% (25 591/78484) of the outliers that
were stable across time and had no CpG-SNP. However, even
in these cases of only one rare allele within 1 kb, we cannot
determine causality without functional experiments. In addition,
our study only investigates SNP variants as this allowed for direct
comparison with available mQTL studies. Structural variants have
been associated with DNAm (e.g. 40,41) and potentially show
larger effects than SNP variants. A further investigation of rare
structural variants and their impacts of DNAm is warranted.

Previous studies have found correlations between DNAm and
gene expression, and an overlap in the association of common
genetic variants between them (7,13,42–46). In this study, we show
that outliers in DNAm levels are associated with a difference in
gene expression levels at nearby genes, with lower methylation
levels corresponding to higher gene expression levels. Summary-
data based Mendelian randomization (47) analyses have provided
us with evidence of pleiotropic effects of common variants on
DNAm and gene expression levels across the genome (14,17).
In addition, the proportion of phenotypic variance explained by
the lead variant at an mQTL was, on average, larger than the
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Figure 5. Density plot of the percentile in the gene expression distribution of individuals with outlying DNAm levels at linked DNAm probes, and at
DNAm probes within 10 kb. Taking all DNAm and gene expression probe pairs linked through a SMR analysis (A and B), and at DNAm probes within 10 kb
of a gene expression probe (C and D). There is significant deviation from the uniform distribution, with an inflation at the ends of the distribution, for
gene-expression values in individuals with outlying levels of DNA methylation (A, C), and this deviation is most pronounced when gene and methylation
sites are linked through SMR (A). There is minimal deviation from the uniform distribution of gene expression when considering individuals without
outlying DNA methylation (B, D).

phenotypic variance explained by the same variant at a co-
localized eQTL and at a co-localized higher-order complex trait
QTL, such as height (17). This attenuation in effect size of the
variant at each step suggests a mechanism of effect from genetic
variant to DNAm, to gene expression, to higher-order complex
trait. In this study, we observed that large differences in DNAm
often corresponded to smaller differences in gene expression,
which would fit into this hypothesized directional mechanism
of effect. In addition, the difference in slope in Figure 4 also
suggests a larger effect from genetic variation on DNAm levels
than gene expression levels. However, given our study design of
first identifying large effects on DNAm and then investigating
their effects on gene expression, our effect size estimates will
be biased by the winner’s curse in DNAm, and care needs to
be made in the interpretation of the direction of causation.
Indeed, our observation is in contrast to some previous studies
(e.g. 48) who arrive at the opposite conclusions when starting
with discovery in eQTLs. More work will be needed to fully
understand the interplay between DNAm and gene expression;
however, it appears likely that DNAm plays both an active role
in determining gene expression and a passive role in stabilizing
it. The mechanism may be important to consider, as DNAm has
been shown to be associated with many common diseases (6),
and as methylation outliers are relatively easy to detect, it could
provide a useful tool for future research.

A limitation of our study was that of the two data sets available
to us, one (LBC) had WGS and DNAm array data, whereas the
other (BSGS) had SNP array, DNAm array and gene expression
array data. Ideally the study would be conducted on a cohort with
all data types. With the increasing availability of whole genome
sequence data, as well as RNA-seq and DNAm array/bisulphide
sequence data, a more comprehensive study of the effects of
rare variants on both DNAm and gene expression would provide

a better understanding of the mechanisms underlying genetic
effects on complex traits. We also transformed the DNAm and
gene-expression data and corrected for various covariates. The
rank-normal transformation helps limit false positive results,
particularly when associating the measure with rare SNP variants.
However, both the transformation and corrections for covariates
affect the power of mQTL and eQTL detection and could lead to
residual correlations between the measures. Limiting the scope
of the analysis using SMR and sequence distance based filtering
reduces the potential effects of this residual correlation on our
results. Finally, this analysis was done using only white European
individuals; while we do not expect the effect of rare genetic SNPs
to differ across populations, there will be many more population
specific effects compared to common variants.

Other epigenetic mechanisms, such as histone tail modifica-
tions, are highly correlated with DNAm levels, are under shared
genetic control (7,13) and are also involved in the regulation of
gene expression (46,49). We hypothesize that other epigenetic
modifications may also show similar patterns of effects to what
we found in DNAm, and including these into future analyses
could potentially provide a more complete picture of the shared
genetic control between DNAm, other epigenetic modifications
and gene expression. A large proportion of patients who have
genome sequencing undertaken are unsuccessful at being pro-
vided a molecular diagnosis (50,51). The improved functional
annotation of noncoding variants is a particularly important step
in identifying those variants that are truly pathogenic from those
that are benign, resulting in improved diagnostic rates of dis-
ease genome sequencing studies while an understanding of the
mechanism of effect. The combination of large sample sizes with
extensive phenotypic records becoming available through many
international biobanking efforts and high-throughput screening
of genetic modification in cellular models will be needed to enable
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the translation of the observation regional associations between
rare genetic variants and outlying levels of DNAm through to
determining individual rare variants and their mechanistic effect
on disease.

In summary, this study provides a novel insight into the effect
of rare variants on DNAm levels across the genome and shows
that extreme differences in DNAm are associated with gene
expression levels at nearby genes, which may be driven by rare
genetic variation.

Materials and Methods
Lothian birth cohorts of 1921 and 1936
The LBC of 1921 and 1936 (LBC) (35) are longitudinal studies of
cognitive ageing. DNA were extracted from whole blood samples
from which DNAm levels were measured using the Illumina
HumanMethylation450 BeadChip array across three or four time-
points (the DNAm data was deposited in EGA with accession
number EGAS00001000910). The raw intensity data were back-
ground corrected, corrected for cell-type and quantile normalized
using standard QC protocols, and the DNAm beta-values were
generated using the R package meffil (52). Probes were removed
according to (53), removing probes with evidence of an overlap-
ping SNP or repeat region, leaving 415 007 autosomal CpG-probes.

DNAm levels were measured at an average age (sd) of 79.1 (0.6),
86.7 (0.4) and 90.2 (0.1) years in the LBC1921 cohort and ages 69.6
(0.8), 72.5 (0.7), 76.3 (0.7) and 79.3 (0.6) years in the LBC1936. Of the
1342 individuals with DNAm measured at one point, 642 had at
least three time-point measurements. While DNAm levels across
the genome are known to change with age (16,38), this is not a
confounding factor in our analysis as the age ranges within each
wave of measurement are very narrow (mean standard deviation
of age for each cohort in each wave was 0.6 years). Individuals
with outlying B-cell counts were observed to have excess levels of
outliers across all CpG-sites; these individuals were removed from
the analyses.

Whole genome sequencing was performed on the HiSeq X with
an average coverage of 36x (minimum 19.6×, maximum 65.9×)
(The whole genome sequence data have been deposited in EGA
with accession number EGAS00001003819). Details of the QC can
be found in (54). Briefly, reads were mapped using BWA (55) to
the build 38 of the reference genome, and GATK (56) was used for
variant calling. Variant effect predictor (57) was used to annotate
variants and gene models from the version 85 release of Ensembl.

To remove any distant relatives, we computed a genetic
relatedness matrix from the common variants using GCTA
(58), and removed one of every pair with value >0.05. Variants
with VQSLOD<0.3546 were removed, and genotypes with
GQ < 20 or DP < 7 were also removed. All samples are White
European in ancestry, with no genetic outliers in the samples
(Supplementary Material, Fig. S9).

The final sample size after taking individuals in both WGS and
DNAm data after QC was N = 1196 and N = 613 for individuals with
DNAm levels measured at three or more waves.

Brisbane Systems Genetics Study
The BSGS (37) was a dataset designed to study the genetic effects
on gene expression, and the role of gene regulation in complex
traits. DNAm levels were measured, in whole blood using the
Illumina Infinium HumanMethylation450 BeadChip array (The
DNAm data were deposited in NCBI GEO with accession num-
ber GSE56105), on 614 individuals from 117 families, including
monozygotic twin pairs, dizygotic twin pairs, sibling pairs and

parents. The QC of the DNAm data was performed using the
same pipeline as with the LBC data. Gene expression levels were
measured in whole blood on 846 individuals using the Illumina
HumanHT-12 v4.0 BeadChip array (the gene expression data was
deposited in NCBI GEO with accession number GSE53195). The QC
of the gene expression data is detailed in (59). Briefly, the gene
expression levels were normalized using variance stabilization
(60), quantile normalized using the limma software (61), followed
by PEER factor adjustment (62), with 50 factors, correcting for
covariates such as age, sex, cell counts and batch effects. Both
DNAm and gene expression levels were measured on a total of 595
individuals. All of these individuals are White European in genetic
ancestry (37).

An overview of the methods used to investigate the effects of
genetic SNPs on DNAm levels and gene expression levels using the
LBC and BSGS datasets is shown in Figure 1.

Detecting genome-wide effects on DNAm
Following similar procedures to Zhao et al. (22) and Kremling et al.
(23), we counted the number of minor alleles across all SNPs
within 1 kb of the CpG-site in the LBC data for each individual,
and we sorted the values by the rank of the individuals at each
DNAm probe from lowest DNAm beta-value to the highest. We
averaged this value at each rank across all autosomal probes to
get the mean number of minor alleles within 1 kb of a CpG-
site. We did this for four MAF ranges, MAF > 0.1, 0.1 > MAF > 0.01,
0.01 > MAF > 0.001 and 0.001 > MAF, which allowed us to separate
the effects of common and rare variants. The rarest MAF bin
(MAF < 0.001) corresponded to SNPs with one or two observed
minor alleles in our dataset. This analysis was performed using
the first wave of measurements in the LBC dataset to maximize
sample size. The test was also repeated using larger distances
from the CpG-site.

As a control analysis, before sorting by the rank at each DNAm
probe, we randomly permuted the counts across CpG-sites for
each individual which is roughly equivalent to counting the minor
alleles at a random 2 kb region of the genome.

Detecting outliers
We defined DNAm outliers as a CpG-site in an individual with
DNAm levels outside 3 interquartile ranges (IQRs) from the first
quartile (Q1) or the third quartile (Q3) of the DNAm levels at that
CpG-site, as in previous studies (63,64). The standard 1.5 IQRs from
Q1 or Q3 compares to 3 standard deviations from the mean in
a perfectly normal distribution. Our definition is slightly more
stringent than this, as the distribution of DNAm levels can be
highly skewed. For detecting outliers in the gene expression data,
which had more symmetric distributions, the standard 1.5 IQR
from Q1 and Q3 definition was used.

Enrichment of rare alleles around CpG-sites
We defined enrichment as

Enrichment = P
(

individual is an outlier
)

P
(

individual is not an outlier at any timepoint
) .

In words, we defined enrichment as the probability of an individ-
ual having a minor allele within 1 kb of a CpG-site given they have
outlying DNAm levels at that site, divided by the probability of an
individual having a minor allele within 1 kb of a CpG-site given
they do not have outlying DNAm levels at that site. This is similar
to the definition used in Li et al. (20), although they used a slightly

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddad028#supplementary-data
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different definition of outliers (>2 standard deviations from the
mean). We also repeated this test for larger distances from the
CpG-site.

As a control analysis, considering only probes with at least one
outlier, for each probe, we choose the outliers at a random probe
to perform the count of individuals with a minor allele within 1 kb.
This is equivalent to choosing a random 1 kb site in the genome
but allows us to account for the CpG-sites on the DNAm array
being more densely distributed in genic regions.

Proportion of outliers shared
To compute the proportion of outliers shared between each pair
of individuals, we used the formula 2n12

n1+n2
, where n1 is the number

of outliers for individual one, n2 is the number of outliers for
individual two and n12 is the number of outliers shared between
the individuals. The relatedness coefficients were obtained from
pedigree data.

Testing for association between outlying levels of
DNAm and gene expression
To test for an association between outlying levels of DNAm and
gene expression, the percentile in the gene expression levels
distribution at a gene expression probe was calculated for each
individual with outlying DNAm levels at the paired DNAm probe.
We used two methods to pair DNAm probes to gene expression
probes. First, we linked DNAm probes through a shared common
variant co-localization with the gene expression probe detected
using the SMR method (17,47). We also used all pairings of gene
expression probes within 10 kb of the CpG-sites. This represents a
trade-off between the number of pairs included in the analysis
and including pairs of gene expression and DNAm probes that
have no biological connection beyond proximity. Under the null
hypothesis of no association between outlying DNAm and gene
expression levels, the rank of gene expression levels for individ-
uals with outlying DNAm levels should be uniformly distributed.
We tested for deviation from the uniform distribution using the
Cramér–von Mises test (65), which tests the degree of agreement
between the sampled values and a theoretical distribution, in our
case the uniform distribution.

As a control, we repeated this test with an equal number of
non-outlying individuals at each probe.

Data access
The LBC methylation data used in this study have been submitted
to the European Genome-phenome Archive (EGA; https://www.
ebi.ac.uk/ega/home) under accession number EGAS00001000910.

The LBC whole genome sequence data used in this study have
been submitted to EGA (https://www.ebi.ac.uk/ega/home) under
accession number EGAS00001003819.

The BSGS methylation data used in this study have been sub-
mitted to the NCBI Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE56105.

The BSGS gene expression data used in this study have been
submitted to GEO (https://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE53195.
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